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Estimation of contour motion and deformation
for nonrigid object tracking
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We present an algorithm for nonrigid contour tracking in heavily cluttered background scenes. Based on the
properties of nonrigid contour movements, a sequential framework for estimating contour motion and defor-
mation is proposed. We solve the nonrigid contour tracking problem by decomposing it into three subproblems:
motion estimation, deformation estimation, and shape regulation. First, we employ a particle filter to estimate
the global motion parameters of the affine transform between successive frames. Then we generate a proba-
bilistic deformation map to deform the contour. To improve robustness, multiple cues are used for deformation
probability estimation. Finally, we use a shape prior model to constrain the deformed contour. This enables us
to retrieve the occluded parts of the contours and accurately track them while allowing shape changes specific
to the given object types. Our experiments show that the proposed algorithm significantly improves the tracker

performance. © 2007 Optical Society of America

OCIS codes: 330.7310, 330.4150.
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. INTRODUCTION
isual tracking is an essential component of many appli-
ations from intelligent robotics to video surveillance. Ba-
ically, there are three groups of tracking methods:
orrespondence-based, transformation-based, and
ontour-based. The first group of methods is based on es-
ablishing correspondences between feature points. The
econd group performs tracking by estimating object mo-
ion, in which the objects are usually assumed to be made
f planar shapes such as ellipses and rectangles. The last
roup achieves tracking by finding the object contour in
uccessive frames. It applies to cases when not only the
ocation but also the deformation of a target is estimated
uring tracking. Some useful applications of nonrigid
racking include surveillance tracking for recognition pur-
oses and echocardiography tracking for computer-aided
iagnosis. The tracking approach proposed in this paper
elongs to the group of contour-based tracking methods.

. Related Work
everal contour-based tracking methods have been pro-
osed in the literature. As a milestone in contour-based
racking research, CONDENSATION, a parameterized
-spline contour tracking algorithm, was proposed by

sard and Blake [1]. It uses a particle filter as the basic
ramework to track global motion and deformation. The
lgorithm yields robust results when applied to rigid ob-
ects. However, it has no explicit criterion for extracting
he exact boundary of a nonrigid object in its observation
odel. In [2], Li et al. presented a particle filter for non-

igid object contour tracking. But the algorithm lacks an
ppropriate model for discriminating a real boundary
1084-7529/07/082109-13/$15.00 © 2
rom all the detected edge points. The snake [3,4], or dy-
amic contour-based method, is another common ap-
roach that evolves an object boundary such that a
eighted sum of external and internal energy terms is
inimized. However, such methods are restricted to a

elatively small range of situations, because they require
hat intensities inside objects be fairly uniform. Further-
ore, their computational complexity makes them less

uitable for real-time applications. The level-set approach
s also a powerful method that deals with topological
hanges of the moving level-set function by using partial
ifferential equations (PDEs) that describe the object mo-
ion, boundary, and region-based information [5–8]. But
he PDE-based approach also prefers uniform intensity
istributions inside objects.
Some other approaches closely related to nonrigid con-

our tracking were presented in [9–11]. The concepts of
otion and deformation were defined in [11]. Motion is

arameterized by a finite-dimensional group action, and
eformation is the total deformation of the object contour
infinite-dimensional group) modulo the finite-
imensional motion group. By incorporating the prior in-
ormation of the system dynamics into the deformation
ramework, Jackson et al. [9] proposed a nonlinear dy-
amical model for tracking a slowly deforming and mov-

ng contour, with the contour implicitly represented as
he infinite-dimensional locus of zeros of a given function.
he algorithm suffers from expensive computations due

o the joint minimization of group action and deformation.
he work in [10] extended the ideas in [9]. It used a par-

icle filter to estimate the conditional probability distribu-
ion of motion and contour, which enables the incorpora-
ion of a prior system model along with an observation
007 Optical Society of America
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odel. However, this algorithm also has limitations. It
ounts on only appearance cues in the observation model
nd, because of sensor motion, lacks the ability to handle
oving backgrounds.
Our approach shares some similarities with that of

10]. We claim that tracking nonrigid objects can be ac-
omplished by estimating both translational (finite-
imensional, motion) and nontranslational movements
infinite-dimensional, deformation) of objects. However,
nstead of estimating both motion and deformation in one
tep, we propose a sequential approach. We first estimate
he motion and then the deformation. The estimation of
eformation fulfills the operation of discriminating the
eal boundary from all the edge points, the majority of
hich may be from the background. Robustness can be

mproved by constraining the deformation by using a
rior shape model. Therefore we decompose the task of
racking nonrigid object contour into three components:

• 2D Motion estimation. It estimates the objectwise
patial rigid-body motion, including translation and rota-
ion parameters. Since the motion parameters are finite
imensional, we use a particle filter to estimate them.
• 2D Shape deformation. It captures the pose changes

f nonrigid objects. Each pixel on the boundary may have
ifferent but correlated deformations. We construct a de-
ormation probability map based on a statistical analysis
f different cues in each frame. Deformation is deter-
ined according to boundary pixels with higher deforma-

ion probabilities.
• Shape regulation. It uses a trained shape subspace

o restrict shape deformations. Regulation also recon-
tructs the occluded parts of the contours. Our method
daptively integrates the off-line trained prior shape
odel with the object in the current video sequence.

Figure 1 presents a schematic illustration of the pro-
osed system. The rest of the paper is organized as fol-
ows. In Section 2, we introduce some preliminary con-
epts of the active contour tracking algorithm. In the next
hree sections, we describe the three sequential stages in
he nonrigid contour tracking algorithm: motion estima-
ion, deformation estimation, and regulation. We present
xperimental results in Section 6, followed by conclusions
nd discussion in Section 7.

. PRELIMINARIES
. B-spline Parametric Curves

n our contour tracking system, the tracking target is rep-
esented by the parametric B-spline curve. The visual 2D
urves outlining the objects are represented in terms of

ig. 1. (Color online) Illustration of the proposed tracking
ystem.
arametric B-spline curves r�s�= �x�s� ,y�s��T [12]. The co-
rdinates �x�s� ,y�s�� are both spline functions of the curve
arameter s. Furthermore, we use a set of control points
= �q1 ,q2 , . . . ,qL� to represent the B-spline curve, where

ach control point is defined as ql= �ql
x ,ql

y�T and L is the
umber of control points. One important reason for using
he control-point representation is that the set of Q can
niquely determine a given B-spline curve. If we define
he dynamic model that describes the contour motion as
n affine transform, it is sufficient to apply the transform
o the control points. Once the control points are trans-
ormed, the B-spline curve is transformed in the same
anner. The property not only significantly improves the

omputational efficiency but also helps to discretize the
nfinite deformation parameters into finite deformation
arameters; i.e., the deformation of the curve can be ap-
roximated by the deformations at the control points.

. Particle Filter
he objective of motion tracking is to recursively estimate

he state of the dynamic model given some noisy visual
bservations, which can be formulated using the Baye-
ian approach by computing

p��t�Y1:t� � p�Yt��t� � p��t��t−1�p��t−1�Y1:t−1�d�t−1, �1�

here � denotes the state vector, Y the observation, and
�Yt ��t� the likelihood function at time instant t. Observa-
ion Y could be raw images or features in images. All in-
erences regarding the unknown state vector are based on
he posterior probability in Eq. (1). The basic criterion is
o find the vector with the maximum posterior probability.
any techniques (such as the Kalman filter [13] or the

article filter [14]) can be used to achieve the goal. The
ormer is effective when the data are modeled as a linear
aussian model. The latter, also known as the sequential
onte Carlo algorithm, is a set of simulation-based meth-

ds proposed to handle more complex data that may be
on-Gaussian, and/or nonlinear. Many contour tracking
lgorithms use the particle filter algorithm because it is
exible, easy to implement, parallelizable [15], and appli-
able to general settings. We also use the particle filter to
stimate the state vector of the dynamic model.

In the particle filter algorithm, the prediction step
amples new particles based on the state transition prob-
bility p��t ��t−1� and the previous posterior distribution
��t−1 �Y1:t−1�, while the update step is controlled by par-
icle weights characterized by the likelihood function
�Yt ��t�:

�t
�j� � p�Yt��t

�j��, �2�

he algorithm approximates the current posterior distri-
ution p��t �Y1:t� by a set of weighted particles St

��t
�j� ,�t

�j��j=1
J with J representing the number of particles.

o avoid the potential of the particles collapsing into a few
articles with high weights, the sequential importance
ampling [16,17] draws particles from a proposal distribu-
ion g��t

�j� ��t−1
�j� ,Y1:t� and eliminates particles with lower

eights. The weights are assigned as
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�j
�j� �

p�Yt��t
�j��p��t

j��t−1
�j� �

g��j
�j���t−1

�j� ,Y1:t�
. �3�

he selection of proposal distribution can be tuned to ap-
lications under consideration.

. MOTION ESTIMATION
. Dynamic Motion Model
e use the parameters of a 2D affine transform to repre-

ent the finite-dimensional motion of the object, which al-
ows rotation and translation and is independent of scale.
he contour transform is given in terms of the homoge-
eous coordinates of the control points as

	ql,t−1

1 
 = T · 	ql,t

1 
 = �
T11 T12 T13

T21 T22 T23

0 0 1
� · 	ql,t

1 
 , �4�

here T�R3�3 represents an affine transform matrix
ith independent scale factors along both the x and the y
xes. Accordingly, the state vector of the dynamic model is
efined as

�t = �T11 T12 T21 T22 T13 T23�T. �5�

. Estimate State Vector by Particle Filter
e use the particle filter to obtain the maximum a poste-

iori (MAP) estimate of the state vector �.

. Prediction Step
ather than using a proposal distribution for prediction,
e predict the configuration of particles based on the fol-

owing state transition model:

�t = �̂t−1 + vt + Ut �6�

ith �̂t−1 is the previous state estimate, vt is the predicted
daptive velocity in the motion vector, and Ut is the driv-
ng noise, assumed to be zero-mean Gaussian noise. The
omputation of vt depends on the configuration of the pre-
ious particles in the prediction step. Therefore, the di-
ersity of particles is not compromised.

The prediction of vt is based on the assumption of
rightness invariance [18], which means that there exists
�t such that the warping patch is similar to the previous

mage patch. We denote Z�Qt� as the intensities (colors) of
he control point set Qt (for robustness purposes we use
he corresponding intensities of Gaussian smoothed im-
ge frames). Then there exists a �t that satisfies

Zt�Qt� = Zt−1T��t� · 	Qt

1 
� = Zt−1�Q̂t−1�, �7�

here Q̂t−1 denotes the control-point set estimated at t
1. We simplify Eq. (7) as T�Zt ,�t�= Ẑt−1, where Ẑt−1 rep-
esents the corresponding intensities of Q̂t−1. Generally, T
ymbolizes all kinds of transforms, parameterized by �t,
n the control-point set Qt, whose intensities are repre-
ented by Zt, from frame t to t−1. But since we consider
nly 2D rigid-body motion at this stage and it is assumed
o satisfy an affine transform, T represents an affine
ransform from frame t to t−1. Approximating T�Zt ;�t� via
first-order Taylor series expansion around �̂t−1 yields

T�Zt;�t� � T�Zt; �̂t−1� + Ct��t − �̂t−1� = T�Zt; �̂t−1� + Ctvt,

�8�

here Ct=�T /�� is the Jacobian matrix. Substituting Ẑt−1
nto Eq. (8), we obtain

Ẑt−1 � T�Zt; �̂t−1� + Ctvt, �9�

vt � − Bt�T�Zt; �̂t−1� − Ẑt−1�, �10�

here Bt is the pseudo-inverse of Ct. Using the differences
n motion vectors and the observation matrix as inputs,
e obtain a least-squares solution to Bt as

�t−1
� = ��t−1

�1� − �̂t−1, . . . ,�t−1
�J� − �̂t−1�, �11�

Zt−1
� = �Zt−1

�1� − Ẑt−1, . . . ,Zt−1
�J� − Ẑt−1�, �12�

Bt = ��t−1
� Zt−1

�T ��Zt−1
� Zt−1

�T �−1, �13�

here �t−1
� is the set of differences between all particle

amples of ��t−1
�t� �j=1

J and the optimal estimate �̂t−1, Zt−1
�j� is

he jth patch sample with state vector sample �t−1
�j� , and

t−1
� is the set of all intensity differences between samples
f �Zt−1

�j� �j=1
J and Ẑt−1. Obviously, the particle configuration

t t−1 is incorporated here for prediction.

. Updating Step
he weight is updated based on the likelihood function
�Yt ��t�. We follow the definition of the observation model

n [1]. We search along the normal line nl at each control
oint ql, which is determined by the corresponding �, and
etect feature points �zj

�l��j=1
Nl , where Nl is the number of

eatures detected along the normal. The existence of mul-
iple feature points is due to background clutter. Assum-
ng that �zj

�l�� can be modeled as a spatial Poisson distri-
ution along the normal lines and the true control point is

Gaussian distribution, the 1D measurement density
long nl can be determined by the distances between the
eature points to the corresponding control point, charac-
erized as

pl�z�ql� � 1 +
1

�2��	

�
j=1

Nl

exp	−
�zj

�l� − ql�2

2�2 
 , �14�

here 	 is the probability of nondetection, 
 is the density
f clutter in the Poisson distribution, and � is the stan-
ard deviation of the Gaussian distribution. Figure 2 is
n intuitive illustration of evaluating the likelihood func-
ion for one control point. With the assumption that fea-
ure outputs on distinct control points are statistically in-
ependent, the overall likelihood becomes

p�Y��� = �
l=1

L

pl�z�ql�. �15�



4
A
f
f
l
W
m
e
I
g
n
h
t

b
t
O
p
r
o
b
m
d
c
d
n
c

A
T
s
[
l
t
a
n

1
I
a
f
n
s
p
t
p

w
t
h
r
m
s
l
a
[
a
l

w
l

2
E
l
m
s
a
l
(
l
l
c
c
F
t
w
fl

B
T
t
c
w
p
l
l
o

F
t
m
a

2112 J. Opt. Soc. Am. A/Vol. 24, No. 8 /August 2007 Shao et al.
. DEFORMATION ESTIMATION
fter the MAP estimator �̂ is obtained and the trans-

ormed control point Q̂ is acquired based on �̂, the trans-
ormed curve r̃ is determined. The next thing is to enforce
ocal deformation, i.e., find the real boundary points [1].

e used a simple strategy that the exact contour is deter-
ined by selecting feature points with maximum gradi-

nt magnitudes detected on corresponding normal lines.
n other words, the contour estimation counts on only the
radient magnitudes. Unfortunately, this strategy does
ot always work, especially when the background is
eavily cluttered or the object undergoes shape deforma-
ions between frames.

In our algorithm, we identify the correct feature points
y detecting the deformation along the normal lines on
ransformed control points Q̂. Two elements are involved.
ne relates to the assumption that the real boundary
oints of an object are detected along the orthogonal di-
ections of the contour. It implies that the scanning range
f normal lines influences the probability of the real
oundary being detected. The other is that the gradient
agnitudes are not sufficiently robust for exact contour

elineation, especially when contaminated by background
lutter and object textures. Accordingly, our strategy for
eformation estimation contains two new features: (1) set
ormal lines adaptive and (2) integrate several statistical
ues into a deformation confidence map.

. Set Normal Lines Adaptive
he scanning range of normal lines is determined by
earching lengths and centers. Earlier algorithms
1,2,8,19,20] set the search lengths and centers of normal
ines identical and fixed, which may result in false detec-
ions due to inadequate modeling of shape variations. We
llow for adaptability of the normal lines to reduce the
umber of false detections.

. Lengths of Normal Lines
ntuitively, a short normal line may miss the true bound-
ry pixel while a long one may intersect with edge points
rom background clutter. To reduce the possibility of a
ormal line intersecting with background clutter without
acrificing the chance of finding the actual boundary
ixel, the lengths of normal lines are altered according to
he pose variations of the corresponding contour control
oints in training sequences. For example, in sequences of

ig. 2. (Color online) Illustration of estimating the measuremen
rol points. Light lines are the normal lines on the control points
easurement density along the line normal on one control point

nd the corresponding control point. The vertical axis GEDGE rep
alking humans, the relative positions of the head and
runk change slightly from frame to frame; on the other
and, the sides, especially the legs and arms change their
elative positions more. Therefore, we should set the nor-
al lines of large pose variations longer than those of

mall pose variations. The pose variations of pixels can be
earned offline. For example, walking pedestrian samples
re acquired from the University of South Florida dataset
21], which consists of one thousand 120�80 binary im-
ges with aligned pedestrian silhouettes. Accordingly, the
ength of normal line, denoted by u�l�, is adaptively set as

��l� = E�ql
k − E�ql

k��2, �16�

u�l� � Lminlog
��l�

min���l��
, �17�

here Lmin is a constant representing the minimum
ength and k denotes the index of training samples.

. Centers of Normal Lines
arlier algorithms set the centers of scanning normal

ines as the control points on the estimated contour, which
ay cause the intertwining of normal lines, because the

ame point may be selected twice along two normal lines
nd the output contour may end up looped. Making the
ine centers adaptive by applying a distance transform
DT) [22] significantly reduces the probability of normal
ine intersections inside the object. The detailed steps are
isted in Table 1. The given algorithm concerns only close
ontours. For open contours, we will force them to be
losed by simply linking the first point and the last point.
igure 3 demonstrates the procedure of sketching adap-
ive normal lines along the estimated contour, with which
e are able to search for the real contour pixels with more
exibility.

. Multicue Deformation Probability Map
o extract the real contour, we define a posterior deforma-
ion probability map as Pt�Y �Q̂� based on the transformed
ontrol point set obtained by global motion estimation,
ith Y representing related features. In the map, a high
robability implies that the corresponding pixel is more
ikely to be on the real contour and a low value implies a
ower likelihood. Instead of using edge magnitudes as the
nly feature, we integrate several cues, including edge

el. (a) The red (upper) line is the contour determined by the con-
olid dots are feature points detected by the normal lines; (b) 1D
, d2,j and d3,j are the three distances between the feature points
s the gradient magnitude along the normal line nj.
t mod
. The s
qj; d1,j
resent
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agnitudes, edge orientations, shape templates, and fore-
round estimation, to evaluate the deformation probabil-
ty.

. Multicue Fusion
he process of fusing different cues can be interpreted as
sing multiple measurement sources. Several real-time
racking algorithms reported in the literature fuse motion
nd appearance cues. Viola et al. [23] proposed a pedes-
rian detection system that integrates intensity and mo-
ion information. The detector is trained (using AdaBoost)
o take advantage of both motion and appearance infor-
ation. There are approaches that select the “optimal”

ue for the entire sequence, with other less reliable cues
s supporting cues. A good example of cue selection is
ound in the layered hierarchy extraction algorithm pro-
osed by Toyama and Hager [24]. CONDENSATION, as an
xtension of CONDENSATION with importance sampling,
roposed by Isard and Blake [1] also employed a multicue
cheme by complementing the original intensity gradient
ue with a supportive color cue. Sidenbladh et al. [25] in-
orporated motion measurements in the particle filter
ramework. Odobez and Gatica-Perez [26] improved the
article filter by using transition prior as the proposal dis-
ribution. Some approaches assume that each cue has the

Table 1. Algorithm 1: Set Center of the
Normal Line Adaptive

1. Based on the transformed control points set Q̂t

(the result from global motion estimation),
construct a binary image BI, set the region 

circled by the contour r̃t to 1;
2. Apply DT to BI to obtain a distance map DI,
which is defined as

DI�x� = �miny�r̃ dist�x,y�, x � 

0 otherwise
. �18�

3. On each control point q̂l, draw a normal line
nl, find the distance value satisfying
DIl=maxx�nl

DI�x�.
The lengths of the normal line on two sides of the
control point are set as follows:

u�l�in = min�u�l�/2,DIl − d0�, �19�

u�l�out = max�u�l�/2,u�l� − �DIl − d0��, �20�

where d0 represents a minimum safe distance to
avoid contour loops. Here d0=2.

ig. 3. (Color online) Example of how to make a normal line scan
istance transformed object, (d) normal lines on control points.
ame reliability in all frames. For example, Birchfield [27]
sed intensity and color distribution of the target with
qual confidences for robust head tracking. Democratic
ntegration, proposed by Triesch and Van der Malsburg
28] introduced an adaptive multicue integration so that
he contribution of each cue varies according to its reli-
bility in each frame. Such a strategy improves the ro-
ustness of the system in different visual situations. Ver-
aak et al. extended the idea for integration of multiple

ues in the particle filter framework [29].
Compared with these approaches, our approach uses

ome special feature cues more natural to contour track-
ng. The contribution of each cue to the entire system is
eflected by a probability. Assume that we have M cues:
he observation can be represented by Y= �Y1 , . . . ,YM�. We
urther assume that the observations are conditionally in-
ependent [30]. The deformation probability is therefore
actorized as

Pt�Y�Q̂� = �
i=1

M

Pt�Yi�Q̂�. �21�

canning for pixels with maximum probability values
maximum-likelihood estimator) on adaptive normal
ines, we obtain the refined contour pixels, denoted r̂. As
n example, we show some probability maps from differ-
nt cues on a processed frame in Fig. 4, together with the
usion map Pt�Y �Q̂�. The fused result shows a reduction of
oise from the gradient magnitude cues inside the con-
our caused by object textures.

We introduce the computation of probability maps from
ifferent cues in the rest of this section. It is worth noting
hat since the scanning range for each pixel is 1D, the 2D
eformation probability map P can be further simplified
o several 1D probability vectors associated with each
ontrol point. Therefore the calculation of the deformation
robabilities is limited to normal lines. This helps to im-
rove the computational efficiency.

. Gradient Magnitude Cues
s shown in Fig. 4(a), the gradient magnitude is an im-
ortant feature for representing an object boundary. How-
ver, when the object itself is not homogenous in color or
ntensity, many edges are generated inside the object. We
ant to minimize the effect of inside edges. Anisotropic
iffusion is one possible approach to make the entire im-
ge to be more uniform in color or texture while still pre-
erving the object boundaries [31]. Therefore it is highly
robable that points with high gradient magnitudes after
iffusion belong to the boundary of the target.
After the diffused feature map EI is extracted from the

riginal image, a motion mask �I indicating the possible
rea where motion could occur is applied to EI to further

daptive. (a) Cropped original object, (b) estimated contour, (c) the
ning a
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uppress the background clutter. The masked map is then
ltered by G, a smoothing Gaussian filter. Finally, we con-
ert the filtered map to a magnitude probability map P by

Pt�Ym�Q̂� = �m�EI · �I� * G, �22�

here �m is a normalizing coefficient and * denotes con-
olution. Figure 5 demonstrates an example of perfor-
ance improvement when we utilize the diffusion edge
ap convolved with the motion mask. Since both the

ackground and the tracked object are moving, a back-
round stabilizing step [32] is applied to estimate the mo-
ion mask �I. The stabilization is based on the idea that
he background movement can be modeled as a planar af-
ne transform.

. Gradient Orientation Cues
gradient orientation map OI provides the orientations

f edges. Gradient orientation is a useful feature to dis-
riminate the real object boundaries from all the detected
dges, especially when background clutter is present. If
e denote the normal orientation of the true boundary as
, it is expected that the local normal orientation should
resent a Gaussian distribution with mean equal to �
33], While the normal orientation distributions of pixels
ot on the boundary tend to be a uniform distribution be-

ig. 4. (Color online) Illustration of fusion from different visual
radient orientation, (c) shape template, (d) foreground, (e) fusio

ig. 5. (Color online) Performance comparisons on a cluttered sc
btain FI because the sequence was acquired by a moving came
ween �0,2��. Figure 4(b) illustrates the different distri-
utions generated by the pixels on the contour and those
ot on the contour. This leads to the definition of the ori-
ntation probability map as

Pt�Yo�Q̂� � exp�−
�OIt�x� − �̂t−1�l��2

�o
2 � ∀ x � R�nl�,

�23�

here R�nl� defines a proximity region to nl:

R�nl� � �y � R�nl� : dist�y,nl� � dist�y,nk�,k � l�.

�24�

. Shape Template Cues
he shape of a tracked object always has certain pattern.
herefore the shape template could be used as one cue,

ndicating the probability that each image pixel belongs
o the real-object contour. Our shape template is different
rom the static shape energy proposed by Cremers et al.
34], which is pretrained and remains the same during
racking. We use an online model that incorporates a dy-
amic part that varies according to the observations
transformed contour by global motion estimation). The

s, including the probability maps of (a) gradient magnitude, (b)

stabilization step is applied to obtain the second set of results to
source
n.
ene. A
ra.
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hape template observation Ys contains the shape prior
odel AS and the dynamic template AQ̂. The former is a

tatic template created from the training data, and the
atter follows a Gaussian distribution, the mean of which
s set to the transformed contour Q̂. The probability is
iven by

Pt�Ys�Q̂� = atAS + �1 − at�AQ̂, �25�

here 0�at�1 is the weight that controls the integration
f AS and AQ̂. Figure 4(c) is an example of the probability
ap from the shape template cue. We show more ex-

mples of probability templates in Fig. 6.
The construction of AS is straightforward. All the

ample images in the training data are first normalized to
he same template size. Normalization here is defined as
ranslating each sample so that the centroid of the con-
our sample matches the geometrical center of the sample
mage. After normalization, for each pixel of the template,
he probability p�x ,y� of it being on a contour is calculated
y counting the occurrence of it belonging to the contour
n each sample, and then normalizing to a probability.

. Foreground Cues
o suppress the contamination from background clutter,
e use a foreground probability map Pt�Yf �Q̂� that esti-
ates the likelihood of a pixel belonging to the tracked

bject. This map is calculated by comparing the current
rame to a set of background models representing the
tatic parts of the scene. The pixelwise background mod-
ls are updated by the previous values for static camera
etups. For moving cameras, these models can be fitted
fter consecutive frames are aligned on a mosaic by global
otion estimation. We define the background as layers of
ultivariate Gaussian functions ���t

i ,�t
i ,�t

i ,�t
i��i=1. . .K

here �t
i is the posterior mean, �t

i is the marginal poste-
ior covariance, �t

i is the degrees of freedom, �t
i is the num-

er of prior measurements of the ith layer, and K is the
umber of layers in 3D color space. At each frame, we up-
ate the layer parameters using an online Bayesian esti-
ation method as described in [35]. We order the layers

ccording to confidence scores. Our confidence measure is
nversely proportional to the determinant of covariance.
hen we select the layers having confidence value greater
han a layer threshold. We measure the Mahalanobis dis-
ance of observed color I�x� from the layers,

di�x� = �I�x� − �t−1
i �T��t−1

i �−1�I�x� − �t−1
i �, �26�

nd update the parameters of the confident layers. Pixels
hat are outside the 99% confidence interval of all confi-
ent layers of the background are considered as fore-
round pixels. After the update, the foreground probabil-
ty map at a pixel is determined as

ig. 6. (Color online) Illustrations of adaptive probability shap
hape prior model; (4), (5), and (6), examples of probability shap
Pt�Yf�Q̂� = � exp− min
i=1

K
di�x�� , �27�

here � is a normalizing constant. Figure 4(d) shows an
xample of the probability map based on the foreground
ue.

. REGULATION ON SHAPE DEFORMATION
ased on the estimated global motion determined by �̂
nd local deformation, we could obtain the deformed con-
our r̂ and therefore track the contour from frame to
rame. However, what if the deformation estimate is se-
erely corrupted by noise? For example, the exact contour
oints may not always coincide with maximum probabil-
ty pixels but may be present at weaker secondary pixels.
n such cases, shape regulation may be used as a con-
traint to recover from errors. The intuition is that learn-
ng the prior shape knowledge of the object from the
raining set could help in delineation. Ideally, the training
amples should cover all deformation variations. If an ob-
ect in one frame exhibits a particular type of deformation
ot present in the training set, the system searches for
he deformation in the subspace that is closest to the tar-
et; i.e., the system projects any deformation onto the
ubspace. The regulation is therefore achieved.

. Generic Shape Model
here are several approaches to subspace construction.
ootes and Taylor introduced the active shape model [36]
ased on the points distribution model (PDM) described
n [37] for obtaining the shape subspace. Our training

ethod is based on the idea of PDM. A shape model is de-
ned in terms of x and y coordinates of every “landmark”
oint lying on the outline of the target. The number of
andmark points is fixed at equal intervals along the con-
ours. The control points of B-splines are regarded as
hese landmark points. Table 2 gives the steps for train-
ng a prior model from a set of N samples, each repre-
ented by a set of columnized L control points QS

i

�qs
�i,j� �1� i�N ,1� j�L�.

. Adaptive Shape Model
he constructed shape model is a generic model that can
pply to all cases as long as a target belongs to the corre-
ponding object category. However, what we really need is
deformation model that more accurately represents the

hape variations in the sequence being considered. One
olution is to update the existing principal components
nalysis (PCA) model with the initial contour of the cur-
ent sequence (either manually marked or automatically
etected) [38]. Denoting x0 as the aligned initial contour
nd the vector bs=PT�x0− x̄� as the subspace component,
he projection residue is obtained as

plates for pedestrians. (1) and (2), shape training samples; (3),
lates in different frames.
e tem
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xr = x0 − x̄ − Pbs. �28�

he residue part represents the shape variation that is
ot being accounted for by the prior model, so the generic
ubspace �x̄ ,P ,�t� is updated by the following equations:

x̄* = �x̄ + �1 − ��xr, �29�

er =
xr

T

�xr�
�x0 − x̄�, �30�

C* = �	�t 0

0T 0
 + ��1 − ��	bsbs
T erbs

erbs
T er

2 
 , �31�

here � is the update weight. By applying singular value
ecomposition to Eq. (31), we obtain �P* ,�t+1

* � satisfying
*�t+1

* �P*�T=C*. The above formulas are extensions of in-
remental PCA or the eigenspace merging formula of [39]
ith tunable update weight � between the old and the

urrent data. For brevity, we still use �x̄ ,P ,�t� to denote
he updated shape subspace in the rest of the paper.

. Subspace Projection
he projection of deformation can be described as repre-
enting the deformed contour by a linear combination of

able 2. Algorithm 2: Construct Prior Shape Model

(a) Align the set of examples into a common frame of
reference, xi=aligned �Qs

i � [37];
(b) Calculate the mean of the aligned examples x̄,
and the deviations �xi=xi− x̄;
(c) Calculate the eigensystem of the covariance matrix
of the deviations, C= 1

N�i=1
N ��xi���xi�T.

(d) The first t principal eigenvectors of the eigensystem
are used to generate x= x̄+Pb, where b is a t-element vector
of shape variation parameters and P is a 2L�t matrix of
t eigenvectors, which composes the estimated shape
subspace. We denote the eigenvalue diagonal matrix as
�t,which is a t�t matrix.

ig. 7. (Color online) Comparisons of tracking results with and
d) are with regulation.

ig. 8. (Color online) One example frame from an MRI sequenc
artilage layer. (1) Detected contour pixels, (2) recovered contour p
ent, (4) final result.
asis in the shape subspace. We first align the deformed
ontour point vector set r̂t to xt, and then apply

xp,t = PPT�xt − x̄� + x̄, �32�

here xp,t is a linear combination of subspace basis. It is
ossible that some control points on r̂ may be occluded or
ot detected along the normal lines. Let us denote the in-
ex set of detected points as Id= �i1 , i2 , . . . �. We can recover
complete projected contour as follows:

xp,t = PPId

† �xId,t − x̄Id
� + x̄, �33�

PId

† = �PId

T PId
�−1PId

T . �34�

projection example is demonstrated in Fig. 7 indicating
comparison between tracking results with and without

hape regulation. Apparently, using the subspace can pre-
lude the contour from deforming to an irregular shape.

. Alignment
he process of alignment is to normalize the contour, be-
ause the shape subspace is constructed from normalized
raining samples. It follows the method for rigid shape
atching proposed by Cootes and Taylor [36]. The basic

dea is to find a transformation matrix (containing the ro-
ation, translation, and scale coefficients) and match the
rocessing contour to the mean of the shape model. An ex-
mple is shown in Fig. 8. The sequence is collected by
agnetic resonance imaging (MRI) of human knees. Our

rimary interest is in the articular cartilage layer. Figure
(1) depicts the detected contour pixels. There are some
ixels that are too obscure to be detected. Figure 8(2)
hows the projected contour using the shape subspace
ithout alignment. Figure 8(3) depicts the contour pixels
fter alignment, and Fig. 8(4) gives the final result.

. IMPLEMENTATION AND EXPERIMENTS
. Algorithmic Implementation
summary of the complete contour tracking algorithm is

iven in Table 3. We want to further discuss the initial-

t subspace regulation: (a) and (c) are without regulation, (b) and

lustrate shape alignment. The target of interest is the articular
sing the shape subspace projection, (3) contour pixel after align-
withou
e to il
ixels u
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zation step. The easiest way to acquire the initial contour
s by manually sketching it around the object of interest
n the first frame. The pixels along the contour are sorted
n clockwise order. The control points are then selected
ased on the uniform-arc-length rule, which provides the
nitial contour. We can also apply automatic shape detec-
ion methods, such as the direct use of probability shape
emplate to detect pedestrians [40]. A nice property of our
racking algorithm is that it has a high tolerance to local-
zation errors in the initial estimate. In our experiments,
e observed that a very approximate but reasonable ini-

ial guess can evolve to capture the real boundary of the
bject of interest in three to six frames, as demonstrated
n Fig. 9.

Table 3. Algorithm 3: Active Contour Tracking

Step1. Initialization: Draw a set of particles from the prior
p��0� to obtain ��0

�j� ,�0
�j��, j=1, . . . ,J, where J is the number of

the particles. Get the initial control point set �Q0
�j�� from �0.

Set t=1.
Step2. Global motion estimation:

Step2.1 Prediction: Estimate the state vector shift �t,
draw particles ��t

�j�� and accordingly the control point set
samples �Qt

�j��, j=1, . . . ,J.
Step2.2 Update: Calculate the likelihood function
L�Yt ��t

�j�� and the posterior �t
�j�= p��t

�j� �Y1:t� for each sample,
then normalize ��t

�j�� and update ��t
�j� ,�l

�j��, j=1, . . . ,J. Find
the MAP estimator of the global motion �̂t=�t

arg maxj��1,. . .,J��t
�j�

and the corresponding Q̂t.
Step3. Local Deformation Estimation: Based on the
estimated Q̂t, generate the deformation probability map Pt.
The deformed contour r̂t can be determined by scanning along
the adaptive normal lines nl,t for pixels with maximum
deformation probabilities.
Step4. Regulation: Project r̂t onto the shape subspace to
acquire the final estimated contour.
Step5. t→ t+1, go to step.2.

ig. 9. (Color online) Example of starting tracking using a ver
ontour has been attached to the object fairly precisely.

ig. 10. (Color online) Pedestrian tracking performance with a s
nal tracked contours.

Fig. 11. (Color online) Results of tracking a vehic
. Experimental Results
e applied the sequential contour tracker to different

ets of outdoor surveillance video sequences containing
oving people and vehicles. All the objects of interests are

ssumed to be objects moving in nonrigid forms. In most
ases, the backgrounds contain clutter that undermines
he tracker’s performance. Among them, four sets of se-
uences were captured by moving cameras, which means
hat in computing the probability maps, the foreground
ue is not involved. The other two sets of sequences were
aptured using static cameras, so the foreground cue is
sed for generating the deformation probability map. The
lgorithm speed implemented by C++ code differs from 6
o 10 frames per second on a 1.5 GHz personal computer
unning Windows XP, depending on different frame sizes.
n our experiments, most comparisons are made between
ur method and the traditional method described in [1].

. Experiment on Stationary Camera Data
igure 10 shows a sequence (the frame size is 437�90
3) acquired by a stationary camera. It contains a pedes-

rian walking through the scene. The traditional active
ontour tracker does not work, for two possible reasons:
1) the normal lines on some of the control points do not
etect the edge points, and (2) in some frames the contour
ets intertwined. Our method takes advantage of the
daptive normal-line strategy to avoid the intertwined
ontour, and subspace projection to recover missing edge
oints. The proposed method achieves satisfactory result
hroughout 159 frames that contain the object.

. Experiments on Moving Camera Data
igures 11, 13, 14, and 15 demonstrate some typical re-
ults for moving camera sequences.

Figure 11 shows a sequence (the frame size is 543
814�3) capturing a moving SUV by a camera from an-

ther vehicle following it. Although the rear view of the
ehicle is a rigid object, the surrounding disturbances and

h initial contour. After tracking for six frames, we find that the

ry camera. The thick light (yellow online) outlines represent the

behind. The comparison result is given in Fig. 5.
y roug
tationa
le from
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mall view changes throughout the video lead to failures
hen the traditional rigid-object trackers are used. Two
ajor distractions are from plain road marks and the sud-

en appearance of another vehicle in front of our target.
till, we obtain good results due to the incorporation of a
eformation map based on several statistical cues.
Figures 12–14 illustrate three challenging sequences

ith walking pedestrians crossing the road. The frame
ize in all three sequences is 541�818�3. Tracking diffi-
ulties arise as a result of the following: (1) The camera is
oving forward very fast, and therefore the global motion

f the pedestrian includes not only translation and rota-
ion but zoom as well. (2) The background is full of road
arks and shadows. The traditional contour trackers get

istracted by these background clutters. (3) The pedestri-
ns in Figs. 12 and 13 wear a white shirt and black pants.
he strong contrast between the two parts usually leads
o shrinking of the tracking result to either the upper part
r the lower part of the body. (4) In Fig. 14, the object has

ig. 12. (Color online) Comparisons of the traditional method an
oving. Upper: using the traditional method; Lower: using the p

ig. 13. (Color online) Sequence with both background and obj
ollowing: (1) camera motion, (2) background clutter, (3) the pants

ig. 14. (Color online) Sequence with both background and objec
racking pedestrian is very similar to the background color. A co
color very similar to that of the background (woods).
he results of our tracker are satisfactory. We notice that

he poses of the pedestrians vary significantly from frame
o frame in both sequences. However, tracking remains
obust.

Figure 15 gives an example with a sequence containing
moving truck (the frame size is 480�720�3). Although
truck cannot be taken as a nonrigid object, we still ob-

erve 2D shape deformation on the truck due to its 3D ro-
ation. This sequence demonstrates the advantage of us-
ng contour-based tracking. The truck in the sequence
hanges views from the back view to the side view, which
eans that some of the corresponding points on the object
ay disappear in the scene. Such a view change will

trongly undermine the result of a regular 2D
ppearance-based tracker unless a 3D appearance model
s used. As mentioned in Section 1, contour-based track-
ng can always yield robust results without requiring cor-
espondences and 3D reconstructions. The results are

proposed method on a sequence with both background and object
d method.

ving. The challenges of processing this sequence are due to the
e shirt that the pedestrian is wearing are of very different colors.

ng. The background is heavily cluttered, and the intensity of the
on result from the traditional approach is also given.
d our
ropose
ect mo
and th
t movi



p
s
t

3
W
o
1
q
I
c
o
t
a

4
T
s
a
a
l
s
w
d
t
a
i
o
i
u
i
a
w
a
c
w

5
W
m
a
t
�

w
W
t
h
n
M
t
a
t

7
T
t
p
a
d
i

m
n
s
t
m
f
F
fi
a
m
t
f
w
t
c
o
s
a
t
d

F
t
d y resu

F
p
a

Shao et al. Vol. 24, No. 8 /August 2007 /J. Opt. Soc. Am. A 2119
romising even with the presence of many challenges,
uch as obscure boundaries, low color contrast, nonsta-
ionary camera, and background clutter.

. Experiments on Occlusion Data
e exploit the application of shape regulation to recover

ccluded contours, the results of which are shown in Fig.
6. This sequence (the frame size is 576�768�3), ac-
uired by a stationary camera, contains walking humans.
n the last several frames, the pedestrian is partially oc-
luded by trees. With subspace projection, we see that the
ccluded parts have been reconstructed. In this sequence,
he clutter is heavy due to the presence of parked cars
nd trees in the scene.

. Experiments on Medical Sequence
he MRI sequence in our experiment consists of 2D image
lices that form a 3D image cube for subsequent 3D visu-
lization, in which we are particularly interested in the
rticular cartilage layer (a very thin, white, crescentlike
ayer). The difficulties of tracking these layers are due to
urrounding tissues often having similar intensity values,
hich leads to some boundary points becoming nearly un-
etectable; further, the sequence is of low resolution due
o the preprocessing step that enlarges the original im-
ge. The traditional active contour method is not effective
n this case, because it lacks means to handle edge point
cclusion. The “snake” method also has difficulty in find-
ng the correct boundary due to the similar intensity val-
es between the cartilage layer and the tissues surround-

ng it. Figure 17 demonstrates the tracking results of
pplying the proposed algorithm to the MRI sequence, in
hich the frame size is 584�584. As a comparison, we
lso provide a set of tracking results using the traditional
ontour tracker. It can be seen that our method performs
ell.

. Performance Evaluation
e use the mean sum of squared distance (MSSD) [41]
easure to evaluate the tracking performance of different

lgorithms. For a sequence with K frames, where the con-
our rk in each frame has L control points,
�xk,1 ,yk,1� , . . . , �xk,m ,yk,m��, we define

ig. 15. (Color online) Airborne sequence with a white truck mo
hen shows the back-right view in frame (3), a side view in fra
emonstrates that the contour-based tracker can give satisfactor

ig. 16. (Color online) Example of an occluded contour being
edestrian is partially occluded by the surrounding trees. Our tra
rrows indicate the occluded parts. We may also note that the pa
MSSD =
1

K�
k=1

K 1

L�
j=1

L

�xk,j − xk,j
0 �2 + �yk,j − yk,j

0 �2, �35�

here �x0 ,y0� represents the corresponding ground truth.
e compare the proposed algorithm with the active con-

our tracking method for two cases: sequences with
eavily cluttered backgrounds and sequences with strong
onrigid movements. Table 4 shows the values of the
SSD and the variance of the squared distance in these

wo cases, respectively. From all the experimental results
nd the comparison table, we find that the sequential
racker performs well in most of the cases.

. DISCUSSION
he sequential contour tracker we have presented is mo-

ivated by the fact that nonrigid movement can be decom-
osed into a global motion and a local deformation. The
lgorithm contains three major steps: motion estimation,
eformation estimation, and shape regulation. The follow-
ng discussion covers the major aspects of the algorithm.

Multistep versus Single-Step. Compared with most
ethods using single-step estimation [1,2,10] to obtain
onrigid contour movement with motion and deformation
imultaneously, we choose a sequential framework to es-
imate motion and deformation separately. One-step esti-
ation presents more systematic formulas, but it suffers

rom high-dimensional computation and poor efficiency.
ortunately, the multistep approach characterizes an ef-
cient solution. The explanation is as follows: We use an
ffine transform to model the global motion. Therefore the
otion state vector is only six dimensional, which eases

he burden on the particle filter. We interpret shape de-
ormation by the deformations occurred on control points,
hich approximates the infinite-dimensional representa-

ion by a finite-dimensional one. Since the processing is
arried out in a sequential manner and a rough contour is
btained by motion estimation, the deformation is
earched only in adjacent regions of the rough contour
nd does not involve numerical simulations (particle fil-
er). Thus, the complexity of the entire computation is re-
uced.
Multicue versus Single-Cue. Although the gradient

n the ground. The truck shows a back view in frames (1) and (2),
) and (5) and a front-right view in frame (6). This experiment
lts on sequences containing 3D object rotations.

ed by shape subspace projection. In the last three frames, the
result recovers the partially occluded contour. Bright (red online)
ars contribute to background clutter.
ving o
mes (4
recover
cking
rked c
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agnitude is a very strong cue to estimate the boundary
ixels, sometimes it is not robust. In our method, defor-
ation estimation counts more on visual cues with the

im of getting more robust contour detection. We could
urther improve the fusion method by associating adap-
ive fusion weights with different cues [42].

Adaptive versus Nonadaptive Normal Line. We adap-
ively set the scanning normal lines according to prior
hape pose variations and previous shape estimate. This
educes the probability of loop occurrence and increases
he possibility of correct detection for real boundary pix-
ls, while reducing the chance for false detection.

Regulation versus Nonregulation. Regulation is impor-
ant for nonrigid contour tracking. It not only constrains
hape deformation and corrects estimating errors but re-
overs the occluding contour pixels as well. Therefore the
ethod is more applicable to situations with nonrigid ob-

ect movements and heavily cluttered backgrounds.
Our method can successfully track nonrigid objects and

et tight contours enclosing the changing shapes of the
argets throughout the sequences. We are currently work-
ng on extensions of the algorithm to the multitarget
racking problem. Model regulation is also worth further
xploitation. We used only the shape prior knowledge as a
onstraint in this paper. However, training samples con-
ain not only the shape but appearance and motion infor-
ation as well. Constructing a prior model based on all

nformation to improve the robustness of tracking will be
n interesting problem.

Table 4. Comparison of Tracking Results in Heavy
Seq

AC

equence MSSDb

eavy-cluttered background 14.7584
onrigid object 9.9741

aACT is the traditional active contour tracking algorithm.
bMSSD is the mean sum of the squared distance.
cVAR is the variance of the distances.

ig. 17. (Color online) Magnetic resonance imaging scans of hum
he upper row demonstrates the results from application of the tr
pplication of our proposed method.
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